Descriptive Complexity of Graph Spectra

نویسندگان

  • Anuj Dawar
  • Simone Severini
  • Octavio Zapata
چکیده

Two graphs are co-spectral if their respective adjacency matrices have the same multi-set of eigenvalues. A graph is said to be determined by its spectrum if all graphs that are co-spectral with it are isomorphic to it. We consider these properties in relation to logical definability. We show that any pair of graphs that are elementarily equivalent with respect to the three-variable counting first-order logic C are cospectral, and this is not the case with C, nor with any number of variables if we exclude counting quantifiers. We also show that the class of graphs that are determined by their spectra is definable in partial fixedpoint logic with counting. We relate these properties to other algebraic and combinatorial problems.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

THE SPECTRAL DETERMINATION OF THE MULTICONE GRAPHS Kw ▽ C WITH RESPECT TO THEIR SIGNLESS LAPLACIAN SPECTRA

The main aim of this study is to characterize new classes of multicone graphs which are determined by their signless Laplacian spectra. A multicone graph is defined to be the join of a clique and a regular graph. Let C and K w denote the Clebsch graph and a complete graph on w vertices, respectively. In this paper, we show that the multicone graphs K w ▽C are determined by their signless ...

متن کامل

Fifty years of the spectrum problem: survey and new results

In 1952, Heinrich Scholz published a question in the Journal of Symbolic Logic asking for a characterization of spectra, i.e., sets of natural numbers that are the cardinalities of finite models of first order sentences. Günter Asser asked whether the complement of a spectrum is always a spectrum. These innocent questions turned out to be seminal for the development of finite model theory and d...

متن کامل

On the Computational Complexity of the Domination Game

The domination game is played on an arbitrary graph $G$ by two players, Dominator and Staller. It is known that verifying whether the game domination number of a graph is bounded by a given integer $k$ is PSPACE-complete. On the other hand, it is showed in this paper that the problem can be solved for a graph $G$ in $mathcal O(Delta(G)cdot |V(G)|^k)$ time. In the special case when $k=3$ and the...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2016